Formulae - Statistics I

This is the formulae for the course, that you will be given for the midterm and exam.

Index Numbers

  • \(i_{t|0}=\frac{x_t}{x_0}\times 100\) with \(x_t, x_0>0\)
  • \(\delta_{t,0}=\frac{x_t-x_0}{x_0}\)
  • \(\delta_{t,0}=i_{t|0}-1\)
  • \(r_{t|0}=\left(i_{t|0}\right)^{1/k}-1\)
  • \(LPI_{t|0}=\frac{\sum p_t^k q_0^k}{\sum p_0^k q_0^k}\)
  • \(LQI_{t|0}=\frac{\sum p_0^k q_t^k}{\sum p_0^k q_0^k}\)
  • \(PPI_{t|0}=\frac{\sum p_t^k q_t^k}{\sum p_0^k q_t^k}\)
  • \(PQI_{t|0}=\frac{\sum p_t^k q_t^k}{\sum p_t^k q_0^k}\)
  • \(FPI_{t|0}=\sqrt{LPI_{t|0}PPI_{t|0}}\)
  • \(FQI_{t|0}=\sqrt{LQI_{t|0}PQI_{t|0}}\)

Probability Theory

Conditional probability

  • \(P(A|B)=\frac{P(A\cap B)}{P(B)}\) with \(P(B)>0\)

Total Probability Theorem

  • \(P(B)=\sum_{i=1}^n P(A_i)P(B|A_i)\)

Bayes Theorem

  • \(P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum_{i=1}^n P(A_i)P(B|A_i)}\)

Random variables

Expected Value

  • \(\mu_X \equiv E[X]\)
  • \(\mu_X = \sum x_i f(x_i)\)
  • \(\mu_X = \int x f(x) dx\)

Variance

  • \(\sigma_X^2 = Var(X) = V[X]\)
  • \(\sigma_X^2 = E[(X-\mu_X)^2]=E[X^2]-\mu_X^2\)

Discrete Joint Random Variables

Joint density function

  • \(f_{XY}(x,y)=P(X=x_i,Y=y_i)=p_{ij}\) with \(p_i=\sum_j p_{ij}\) and \(p_j=\sum_i p_{ij}\)

Expected Value

  • \(E[g(X,Y)]=\sum_i\sum_j g(x_i,y_j)P(X=x_i,Y=y_j)\)

Variance, Covariance, Correlation

  • \(cov(X,Y)=E[(X-\mu_X)(Y-\mu_Y)]=E[XY]-E[X]E[Y]\)
  • \(V[X\pm Y]=V[X]+V[Y]\pm 2cov(X,Y)\)
  • \(cov(a+bX,c+dY)=bdcov(X,Y)\) with \(a,b,c,d\in\mathbb{R}\)
  • \(\rho = \frac{cov(X,Y)}{\sqrt{V[X]V[Y]}}\) with \(\sigma_X, \sigma_Y > 0\)

Discrete Probabilistic Models

Binomial Distribution

  • \(X\sim Bin(n,p)\)
  • \(P(X=x)=\binom{n}{x}p^x(1-p)^{n-x}\) with \(x=0,1...,n\)
  • \(E[X]=np\)
  • \(V[X]=npq\)
  • \(q=1-p\)

Hypergeometric Distribution

  • \(X\sim Hypergeometric(N,M,n)\) with \(p=\frac{M}{N}\), \(q=1-p\)
  • \(P(X=x)=\frac{\binom{n}{x}\binom{N-M}{n-x}}{\binom{N}{n}}\) with \(max(0,M+n-N)\leq x \leq min(M,n)\)
  • \(E[X]=np\)
  • \(V[X]=npq\frac{N-n}{N-1}\)

Geometric Distribution

  • \(X\sim Geo(p)\) \(0\leq p \leq 1\)
  • \(P(X=x)=p(1-p)^{x-1}\) with \(x=1,2,...\)
  • \(E[x]=\frac{1}{p}\)
  • \(V[X]=\frac{1-p}{p^2}\)
  • \(F(x)=\begin{cases}0 & x<1 \\ 1-(1-p)^k & k\leq x < k+1\quad k=1,2..\end{cases}\)

Poisson Distribution

  • \(X\sim Poi(\lambda)\) with \(\lambda>0\)
  • \(P(X=x)=\frac{e^{-\lambda}\lambda^x}{x!}\) with \(x=0,1,2...\)
  • \(E[X]=V[X]=\lambda\)

Continuous Probabilistic Models

Uniform Distribution

  • \(X\sim Unif(a,b)\) with \(a,b\in\mathbb{R}\) and \(a<b\)
  • \(F(x)=\begin{cases}0 & x< a\\ \frac{x-a}{b-a} & a\leq x < b\\ 1 & x\geq b\end{cases}\)
  • \(E[X]=\frac{a+b}{2}\)
  • \(V[X]=\frac{(b-a)^2}{12}\)

Exponential Distribution

  • \(X\sim Exp(\lambda)\) with \(\lambda>0\)
  • \(F(x)=\begin{cases}0 & x\leq 0 \\ 1-e^{-\lambda x} & x>0\end{cases}\)
  • \(E[x]=\frac{1}{\lambda}\)
  • \(V[X]=\frac{1}{\lambda^2}\)

Normal Distribution

  • \(X\sim \mathcal{N}(\mu,\sigma)\)
  • \(\mu\in\mathbb{R}\), \(\sigma>0\)
  • \(E[X]=\mu\)
  • \(V[X]=\sigma^2\)
  • \(Z=\frac{X-\mu}{\sigma}\sim \mathcal{N}(0,1)\)
  • \(E[Z]=0\)
  • \(V[Z]=1\)
  • \(\Phi(z)=P(Z\leq z)\)
  • \(\Phi(-z)=1-\Phi(z)\)